T 2005M
Interflux® T 2005M is the designated thinner for the IF 2005-series of fluxes. Flux thinning is typically done in open flux systems that involve evaporation of the flux solvent like in foam fluxing.
Suitable for
-
Foam fluxing is a technology used in electronics assembly to apply flux to the PCB board in the wave soldering process. The flux is needed to deoxydise the surfaces to be soldered. The technology has mainly been replaced by spray fluxing but does offer some advantages. It provides good and equal flux wetting of the PCB and through holes and it is a simple and cheap unit with no moving parts. The disadvantages are that the applied flux volume cannot be varied and is always maximal. Furthermore it is an open system with evaporation of the flux solvent and potential absorption of water from the air (typical for alcohol based fluxes) that requires monitoring of the solid content or density of the flux and adjusting with flux thinner. Also pollution from the boards that pass through the flux can affect the foaming ability and properties of the flux. A foam stone with very fine holes (~10-20µm) is mounted in a nozzle which is submerged in flux. Pressurised air is pushed through the foam stone to create a foam that will move up the nozzle. The PCB board is transported through the foam that exits the nozzle. The foam will fall back into the flux tank. The flux tank and nozzle are usually made out of stainless steel but can also be made out of a solvent resistent plastic like HDPE. Some important parameters are: The pressurised air needs to be free from water and oil, an oil and water separator are required. The length of the foam stone is preferrably as big as the nozzle to get an equal foam formation across the nozzle. It is advisable that the top of the foam stone is kept submerged at least 3 cm underneath the flux surface. To keep the flux level in the tank stable, some systems will use an overflow system where the flux will be pumped around and in some cases is filtered. Avoid that foam stone will make contact with the air as flux residues can dry and block the holes. If that happens, the foam stone needs to be cleaned in a solvent or be replaced. The flux nozzle opening is preferrably 8-10mm. Adjust the air pressure until a smooth foam formation is achieved. The contact of the foam with the PCB can be checked with a glass plate. With this glass plate also the setting of the air knife can be checked. The air knife is a tube with drilled holes that are preferrably 1 mm in diameter and 5mm apart from eachother. This will create an even air curtain with pressurised air. The air knife is mounted behind the foam fluxer under an angle so that the air curtain will blow off excessive flux from the PCB that will fall back into the flux tank. On the glass plate no dry stripes may be formed. If this is the case the air pressure on the air knife needs to be reduced. No flux drops may fall off the glass plate after that it has passed the air knife. If this is the case the air pressure on the air knife needs to be increased. Most water based fluxes are not suitable for foaming. PacIFic 2010F is a water based flux specifically designed for foaming.
Key advantages
-
Alcohol based soldering fluxes are liquid fluxes that have alcohol(s) as their principal solvent(s). The majority of liquid fluxes used in electronics manufacturing are still alcohol based. The main reasons are their historical use and hence market share and their in general larger process window compared to water based fluxes. Water based fluxes have numerous advantages to alcohol based fluxes, like lower consumption, no VOC (Volatile Organic Compound)-emmissions, no fire hazard, no need for special transport and storage, lower smell in the production area,...However a lot of electronic manufacturers seem to prefer the larger process window of alcohol based fluxes to the advantages of water based fluxes. Alcohol based fluxes in general are less sensitive to the correct spray fluxer settings to get a good flux application on the surface and in the through holes. Furthermore they are more easily evaporated in the preheating and give less risk on remaining solvent drops creating solder balls, solder splashes or bridging upon wave contact. Another parameter that is complicating the implementation of water based fluxes is that changing a flux in some cases can be a time consuming and costly process. It usually involves homologation testing and approval of end customers. Specifically for EMS (Electronic Manufacturing Servivces = subcontractors) this can be a challenge. Some countries have already implemented legislation that limits the VOC-emission of factory chimneys or imposes taxes on VOC emissions. This appears to be an extra incentive to change to water based fluxes. A recent development forced a lot of manufacturers to look into water based fluxes. The COVID-pandemia in the beginning of 2020, suddenly increased the demand for alcohol based desinfectants to that extent that at a certain moment the availability of alcohols on the market was pretty much non existing. Luckily the industry that produces alcohols was able to ramp up their volumes just in time to avoid electronic manufacturers to fall without fluxes to operate their soldering machines.
-
Colophony, also called rosin, is a substance derived from trees that is typically used in soldering fluxes. It can be used in liquid fluxes as well as in gel fluxes. Colophony containing fluxes can be identified by the denomination 'RO' in the IPC classification. Colophony in general provides a good process window in time and temperature but has a number of disadvantages depending on the application that the colophony containing flux is used in. In liquid fluxes for wave and selective soldering, the colophony will give an increased risk on blocking the nozzle of spray and micro jet flux application systems, resulting in more maintenance and higher risk on bad soldering results. The residues of a rosin (=colophony) based flux in the soldering machine and on tools and carriers are quite hard to remove and a solvent based cleaner is usually needed. When the flux with colophony accidentally ends up on the contacts of a connector or contact comb structures like for a remote control or in electro mechanical contactors / relays / switches, it is known to give contact problems and malfunctioning of the electronic unit in the field. Furthermore the residues of the flux that remain on the board can give contact problems with electrical pin testing ( ICT= In Circuit Testing) which can result in delays in production because of false errors. This usually requires cleaning of the PCB and/or the test pins. These expensive test pins are rather fragile and sensitive to be damaged by cleaning. Furthermore the residues of a rosin flux are known not to be compatible with conformal coatings in time. The rosin residue forms a separation layer between the PCB and conformal coating that in time can cause detaching of the conformal coating and also cracking, especially when the electonic unit experiences a lot of temperature cycles (warming up and cooling down). For those reasons fluxes without colophony and more specifically fluxes from the 'OR' classification are generally used for wave and selective soldering. Colophony can also be used in solder wires. Although the colophony provides a good process window in time and temperature, it is very sensitive to discoloration when heated. The discoloration will depend on the type of colophony and the temperature it has seen. As soldering tip temperatures are usually quite high, the colophony in the solder wire will give quite heavy visual residue formation around the solder joints. This will distinguish them from the other solder joints made in reflow, wave and selective soldering. When this is not desirable a cleaning operation needs to be performed. Furthermore the fumes of a colophony containing solder wire are considered hazardous. A fume extraction is mandatory but anyway advisable for any hand soldering operation. Colophony containg wires are still being used quite a lot but colophony free solder wires and more specifically solder wires from the 'RE' classification are gaining importance. Colophony is also used in solder pastes. Beside giving a good process window in time and temperature, it also provides a good stability of the solder paste on the stencil. This will facilitate a stable printing process and hence stable soldering results and defect rates. The discoloration of the rosin in reflow soldering is not so prominent as it is with a solder wire because the temperatures in reflow soldering are lower than in hand soldering. Still the rosin residue has poor compatibility with conformal coating and in time after thermal cycles it might show cracks or detatching of the conformal coating. Although most manufacturers will apply the conformal coating over the solder paste residues, for optimal results it is advisable to clean off the solder paste residues. Giving the benefits of colophony described above, most solder pastes contain colophony.
-
Absolutely halogen free soldering chemistry contains no intentionally added halogens nor halides. The IPC classification allows up to 500ppm of halogens for the lowest 'L0' classification. Soldering fluxes, solder pastes and solder wires from this class are often referred to as 'halogen free'. Absolutely halogen free soldering chemistry goes one step further and does not contain this 'allowed' level of halogens. Specifically in combination with lead-free soldering alloys and on sensitive electronic applications, these low levels of halogens have been reported to cause reliability problems like e.g. too high leakage currents. Halogens are elements from the periodic table like Cl, Br, F and I. They have the physical property that they like to react. This is very interesting from the point of view of soldering chemistry because it is intended to clean off oxides from the surfaces to be soldered. And indeed halogens perform that job very well, even hard to clean surfaces like brass, Zn, Ni,...or heavily oxidized surfaces or degraded I-Sn and OSP (Organic Surface Protection) can be soldered with the aid of halogenated fluxes. Halogens provide a great process window in solderability. The problem however is that the residues and reaction products of halogenated fluxes can be problematic for electronic circuits. They usually have high hygroscopicity and high water solubility and give an increased risk on electro migration and high leakage currents. This means a high risk on malfunctioning of the electronic circuit. Specifically with lead-free soldering alloys there are more reports that even the smallest levels of halogens can be problematic for sensitive electronic applications. Sensitive electronic applications are typically high resistance circuits, measuring circuits, high frequency circuits, sensors,...That's why the tendency is to move away from halogens in soldering chemistry in electronics manufacturing. In general when the solderability of the surfaces to be soldered from component and PCB (Printed Circuit Board) are normal, there is no need for these halogens. Smartly designed absolutely halogen free soldering products will provide a large enough process window to clean the surfaces and get a good soldering result and this in combination with high reliability residues.
-
RoHS stands for Restriction of Hazard Substances. It is a European directive: Directive 2002/95/EC. It restricts the use of some substances that are considered Substances of Very High Concern (SHVC) in electrical and electronic equipment for the territory of the European Union. A listing of these substances can be found below: Please note that this info is subject to change. Always check the website of the European Union for most recent information: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmium and cadmium compounds 2. Lead and lead compounds 3. Mercury and mercury compounds(Hg) 4. Hexavalent chromium compounds(Cr) 5. Polychlorinated biphenyls (PCB) 6. Polychlorinated naphthalenes (PCN) 7. Chlorinated paraffins (CP) 8. Other chlorinated organic compounds 9. Polybrominated biphenyls (PBB) 10. Polybrominated diphenylethers (PBDE) 11. Other brominated organic compounds 12. Organic tin compounds (Tributyl tin compounds, Triphenyl tin compounds) 13. Asbestos 14. Azo compounds 15. Formaldehyde 16. Polyvinyl chloride (PVC) and PVC blends 17. Decabrominated diphenyl ester (from 1/7/08) 18. PFOS : EU directive 76/769/EEC (not allowed in a concentration equal to or higher than 0.0005% by mass) 19. Bis(2-ethylhexyl) phthalate (DEHP) 20. Butyl benzyl phthalate (BBP) 21. Dibutyl phthalate (DBP) 22. Diisobutyl phthalate 23. Deca brominated diphenyl ester (in electrical and electronic equipment) Other countries outside of the European Union have introduced their own RoHS legislation, which is to a great extent very similar to the European RoHS.