ICSF Select
The Revolutionary Selective Jet Fluxer is designed to control the amount of flux for each solder joint without losing the ability to maintain the required cycle time demanded by wave soldering processes. The Jet technology used replaces completely the need of spray technology. As a result, the ICSF-Select offers a Total Flux Process control needed for today’s more demanding and complicated soldering requirements, especially lead-free processes. The ability to program points, lines, multi-lines, areas allows the engineer to decide how much flux/pressure is required for certain solder joints up to complete areas. This capability opens up the process window without risking excess of flux residues. Thanks to the XY-movement speed up to 1,500 mm/s, the cycle time will be up to the standard required for wave soldering mass production.
Suitable for
-
Jet fluxing or microjet fluxing or drop jet fluxing is a technology used in electronics assembly to selectively apply flux to the surfaces to be soldered in the selective soldering process and sometimes also in the wave soldering process. The flux is needed to deoxydise these surfaces. A nozzle shoots tiny drops of flux from a pressurised flux tank to the bottom side of a PCB board. The nozzle can be positioned in an X/Y plane (spot fluxing) or can be moving along a path in the X/Y plane (line fluxing). Usually the PCB is standing still during flux application but some stand alone systems like ICSF Select can apply the flux while the board is moving which can be important in a high volume wave soldering process. The volume of flux can be programmed and depending on the system is expressed in drops/s, Hz,... For spot fluxing the time can be programmed and for line fluxing the speed can be programmed. The goal of the jet fluxer is to apply flux to the surfaces to be soldered which are the surface of the pin of the component and the surface of the trough hole of the PCB. Depending on the size of component and the pin to hole ratio there are several ways to program the fluxer so that the flux will end up on the surfaces to be soldered. This requires some experience. It is also recommendable that no flux will be applied outside the area of contact with soldering nozzle in the soldering process. This flux will see no soldering heat and will be left on the board as an unconsumed flux residue. Depending on the used flux and the sensitivity of the electronic unit, these residues can be critical for the reliability of the electronic unit. In this matter it is important to use a flux from the 'L0' classification that additionnally is absolutely halogen free. Fluxes that are specifically designed for selective soldering like SelectIF 2040 and IF 2005C give the best chance to apply the flux only on the surfaces to be soldered in combination with the best soldering performance. Furthermore it is important that the positioning of the jet fluxer is calibrated on a regular basis to make sure that the nozzle is exactly there where it has been programmed to be. When there is doubt if the jet fluxer is depositing the flux where it is programmed to be deposited, a PCB board can be fluxed without the following preheating and soldering step. When the board exits the machine it can be inspected from the bottom side to verify the correct flux application. A problem that is is sometimes witnessed is blocking of the nozzle by dried up flux residues. Some systems verify if the flux is coming out of the nozzle but others not. In this matter it is advisable to use fluxes from the 'OR' classification, meaning that they do not contain rosin nor resin which are sticky substances that can cause this nozzle blocking. Also a regular cleaning of the nozzle is advisable. If a flux filter is present in the system, check that filter for obstruction on a regular basis. Do not increase flux tank pressure to solve a nozzle blocking problem.
-
Wave soldering is a bulk soldering process used in electronics manufacturing to connect electronic components to a PCB board. The process is typically used for through hole components but can also be used for soldering of some SMD (Suface Mount Device) components that are glued with an SMT (Surface Mount Technology) adhesive to the bottom side of the PCB before passing through the wave soldering process. The wave soldering process comprises three main steps : Fluxing, preheating and soldering. A conveyor transports the PCBs through the machine. The PCBs can be mounted in a frame to avoid adjusting the conveyor width for every different PCB. Fluxing is usually done by means of a spray fluxer but also foam fluxing and jet fluxing are possible. The liquid flux is applied from the bottomside of the PCB on the surface and in the trough holes. The purpose of the flux is to deoxydize the solderable surfaces of the PCB and components and allow the liquid soldering alloy to make an intermetallic connection with those surfaces resulting in a solder joint. The preheating has three main functions. The solvent of the flux needs to be evaporated as it loses its function once its has been applied and it can lead to soldering defects like briding and solder balling when it contacts the solder wave in a liquid state. Water based fluxes in general need more preheating to evaporate than alcohol based fluxes. The second function of the preheating is to limit the thermal shock when the PCB contacts with the liquid solder of the solder wave. This can be important for some SMD components and PCB materials. The third function of the preheating is to promote through hole wetting of the solder. Because of the temperature difference between the PCB board and the liquid solder, the liquid solder will be cooled down when going up the through hole. Thermally heavy boards and components can draw away so much heat from the liquid solder that it is cooled down to the solidification point where it freezes before it gets to the top. This is a typical problem when using Sn(Ag)Cu alloys. A good preheating limits the temperature difference between PCB board and liquid solder and hence reduces the cool down of the liquid solder when going up the through hole. This gives a better chance that the liquid solder will reach the top of the through hole. In a third step the PCB board is passed over a solder wave. A bath filled with a soldering alloy is heated up to soldering temperature. This soldering temperature depends on the used soldering alloy. The liquid alloy is pumped through channels up into a wave former. There are several types of wave formers. A traditional setup is a chip wave combined with a laminar main wave. The chip wave jets solder in the direction of the PCB movement and allows to solder the back side of SMD components that are shielded of wave contact in the laminar wave by the body of the component itself is. The laminar main wave flows to the front but the adjustable back plate is positioned like this that the board will push the wave into a back flow. This will avoid the PCB being dragged through the reaction products of the soldering. A wave former that is gaining popularity is the Wörthmann-wave that combines the function of the chip wave and the main wave in one wave. This wave is more sensitive to the correct setting and bridging. Because of the fact that lead-free soldering alloys need high working temperatures and tend to oxydise quite strongly, a lot of wave soldering processes are done in a nitrogen atmosphere. A new market tendency and the considered by some as the future of soldering is the use of a low melting point alloy like e.g. LMPA-Q. LMPA-Q needs less temperature and reduces oxydation. It also has some cost related benefits like reduced electricity consumption, reduced wear ot of carriers and no need for nitrogen. It also reduces the thermal impact on electronic components and PCB materials.
Key advantages
-
Environment friendly
-
For water fluxes
-
Tremendous reduction in flux fumes going into the exhaust/environment
-
For alcohol-based fluxes
-
Up to 95% less flux usage
-
Longer life of PCB carriers/pallets
-
Less maintenance chemicals
-
Stand-alone fluxing system
-
For rosin fluxes
-
Solderability Performance
Documents
-
Available in 0 languages:
-
Available in 1 languages: